Raccordement direct des étalons de longueur d'onde à l'unité de temps GPS

Direct link of wavelength standards to time unit through GPS timescale

Jean-Pierre WALLERAND

LNE-INM, CNAM, 61 Rue du Landy, 93 210 La Plaine Saint-Denis, France, jean-pierre.wallerand@cnam.fr.

Résumé

La traçabilité des mesures de longueur, par la définition du mètre, passe par la mesure de la fréquence de sources lasers utilisés pour des mesures interférométriques. Nous décrivons dans cet article le système de mesure mis en place au LNE-INM permettant de relier la fréquence des sources lasers et donc leur longueur d'onde dans le vide à l'unité de temps. Le principe est l'utilisation du temps GPS, disponible simplement et par tous par une antenne.

MOTS CLÉS : ÉTALONS DE LONGUEUR D'ONDE, PEIGNE DE FRÉQUENCES OPTIQUES, TEMPS GPS, MOLÉCULE D'IODE.

Abstract

Traceability of length measurements, through the definition of the metre, is ensured by the frequency measurement of lasers used for interferometric measurements. We describe in this paper the measurement system developed in LNE-INM enabling the link between the wavelength of lasers to the time unit. Basically, we use the GPS time, available with a simple antenna.

<u>KEY WORDS</u>: WAVELENGTH STANDARDS, OPTICAL FREQUENCY COMB, GPS TIME, MOLECULAR IODINE.

1. Introduction

1.1. Définition du mètre de 1983

La définition du mètre promulguée par la 17^e Conférence générale des poids et mesures en 1983 a été motivée par l'avènement des lasers dès 1961 et les avancées importantes qui avaient été réalisées dans la mesure de la vitesse de la lumière. Ces expériences consistaient en les mesures indépendantes de la longueur d'onde dans le vide d'un laser émettant à 3,39 µm et de sa fréquence. Sa longueur d'onde était déterminée par comparaison interférométrique avec la radiation d'une lampe à krypton qui était à l'époque la référence de longueur d'onde. Sa fréquence était déterminée par comparaison avec une horloge à césium, la référence de fréquence, grâce à une chaîne de fréquences ad hoc. Le produit des deux quantités donnait la valeur de la vitesse de la lumière dans le vide. L'incertitude était dominée par l'incertitude sur la longueur d'onde émise par la lampe à krypton puisque la reproductibilité relative de la longueur d'onde dans le vide de ces lampes était de $3 \cdot 10^{-9}$, valeur finalement retenue pour l'incertitude relative sur la valeur de la vitesse de la lumière compte tenu de la définition du mètre précédente. La définition de 1983 fixe la valeur de la vitesse de la lumière dans le vide, sans incertitude. La limitation fondamentale à la réalisation du mètre est donc devenue la mise en pratique de la définition de la seconde. D'autres considérations, comme la notion même de distance entre deux points d'un objet macroscopique, limitent la mise en pratique de la définition du mètre à une échelle bien supérieure à 10^{-15} qui est l'exactitude relative actuelle des meilleures horloges.

La mise en pratique de la définition du mètre passe donc depuis 1983 par une mesure de fréquence. La longueur d'onde dans le vide d'un laser est déduite de la mesure de sa fréquence.

1.2. Recommandations du CIPM pour la mise en pratique de la définition du mètre

Le CIPM recommande trois méthodes pour la réalisation du mètre [1] :

(a) par une mesure de temps de vol dans le vide ;

- (b) par la mesure de la fréquence d'une onde électromagnétique plane ;
- (c) par l'utilisation de radiations issues d'une liste dont les valeurs de fréquence sont données avec une certaine incertitude, pourvu que certaines recommandations et règles de bonne pratique soient suivies.

La méthode (a) est utilisée en pratique pour des mesures de grandes distances (distance Terre-Lune par exemple) puisqu'elle est limitée par le temps de réponse des électroniques de détection.

La méthode (c) a été très largement utilisée jusqu'à l'avènement très récent des peignes de fréquence délivrés par les lasers femtosecondes. Elle permet, moyennant le respect de certaines règles de fonctionnement des étalons et de bonne pratique, de réaliser des étalons de longueurs d'onde dans le vide. Pour les plus utilisés d'entre eux, des comparaisons internationales étaient régulièrement organisées par le BIPM. Ces comparaisons permettaient notamment de définir les règles de bonne pratique.

La méthode (b) était extrêmement peu utilisée jusqu'à l'apparition des peignes femtosecondes puisqu'il fallait réaliser une chaîne de synthèse de fréquence spécifique pour chaque laser qu'on souhaitait mesurer. Il s'agit en effet de comparer une référence de fréquence aux alentours de 10 GHz à une fréquence optique aux alentours de 500 THz. Depuis l'apparition des peignes de fréquences basés sur des lasers impulsionnels à large spectre, ces mesures directes de fréquences optiques sont devenues réalisables pour tout laboratoire possédant une référence de fréquence.

2. Principe de mesure d'une fréquence optique par peigne femtoseconde

L'introduction d'une technique révolutionnaire depuis les années 1999-2000 [2] a permis la démocratisation de la mesure des fréquences optiques. Elle est basée sur l'utilisation d'un peigne de fréquences constitué de raies spectrales dont l'écart est asservi sur l'étalon primaire de fréquence. Ce peigne est équivalent à une règle qui permet de mesurer l'écart entre deux fréquences en comptant le nombre non entier de traits qui les sépare. L'idée n'est pas nouvelle car dès les années 1980 des mesures d'écart entre fréquences optiques ont été réalisées avec des peignes issus de lasers picoseconde ou avec des lasers continus modulés en fréquence à de très forts indices de modulation. Mais ces systèmes avaient une bande passante trop limitée pour mesurer directement une fréquence optique. Le pas décisif a été franchi grâce au développement conjoint et indépendant d'une part de lasers femtosecondes à taux de répétition élevé et d'autre part de fibres dites à cristaux photoniques permettant d'élargir le spectre de ces lasers femtosecondes sur plus d'une octave [3].

Le laser proprement dit est un laser Ti:saphir émettant un train d'impulsions d'une largeur temporelle Δt d'environ 30 fs, avec un taux de répétition f_{rep} d'environ 1 GHz. Dans le domaine fréquentiel, ce train d'impulsions est un peigne de fréquences dont les dents sont séparées de f_{rep} et s'étendant sur une plage de $1/\Delta t$. Autrement dit, la sortie du laser est équivalente à l'émission d'un très grand nombre de lasers, correspondant chacun à une des dents du peigne.

Fig. 1. – (a) Train d'impulsions émis par un laser à modes bloqués ; la porteuse correspond à la fréquence centrale du laser. Chaque impulsion est séparée d'un temps $T = 1/f_{rep}$. Le déphasage $\Delta \phi$ entre la porteuse et l'enveloppe vient du fait que, à l'intérieur du laser $v_g \neq v_{\phi}$;

(b) Spectre raies, correspondant à la transformée de Fourier du schéma (a). Les pics en gras sont les signaux physiquement présents dans le peigne, les pics plus fins sont l'extrapolation aux basses fréquences nécessaire pour mettre en évidence le décalage f_0 . La connaissance de f_0 et f_{rep} est suffisante pour la détermination de la fréquence de chaque raie f_n .

Pour comprendre le fonctionnement du système de mesure femtoseconde et des techniques utilisées, on considère la propagation d'une impulsion de fréquence porteuse v_L dans la cavité laser de longueur *L* comme le montre la figure 1. La sortie du laser est un train d'impulsions, séparés d'un temps $T = L/v_g$ où v_g est la vitesse de groupe moyenne dans la cavité. Dans le cas des lasers utilisés pour les mesures des fréquences optiques, *L* est de l'ordre de 30 cm, par conséquent *T* est proche de la nanoseconde. Deux impulsions successives ne sont pas tout à fait identiques car l'enveloppe des impulsions se propage à la vitesse de phase v_{φ} . Il en résulte, à la sortie du laser, un déphasage de la porteuse dans l'enveloppe de $\Delta \varphi$ entre chaque impulsion :

$$\Delta \varphi = 2 \cdot \pi \cdot (1/v_g - 1/v_{\varphi}) \times L \times v_L \quad (\text{modulo } 2\pi) .$$

Une analyse spectrale du signal en sortie du laser (autrement dit sa transformée de Fourier), fait apparaître un peigne de fréquences dont les dents sont espacées de la fréquence de répétition des impulsions f_{rep} . On note que f_{rep} étant l'inverse de *T* est égal à v_g/L ($\approx c/L$). On montre que la différence entre v_g et v_{φ} induit un décalage de l'extrapolation du peigne à l'origine de $f_0 = \Delta \varphi / 2\pi T$ appelé communément décalage du peigne. Ainsi, la fréquence de la n^{e} raie du peigne s'écrit :

 $f_n = f_0 + n \times f_{rep}$.

Cette relation simple qui relie deux radiofréquences f_0 et frep à une fréquence optique fn est à la base des mesures de fréquence optique. La mesure des deux fréquences micro-ondes f_0 et frep et la détermination sans ambiguïté de l'entier n permet la détermination de f_n . Le décalage du peigne peut être mesuré par une technique dite d'autoréférence si l'étalement du spectre est supérieur à une octave [4]. Aujourd'hui, on ne dispose pas d'un laser permettant d'obtenir directement une telle largeur spectrale. On utilise un faisceau issu d'un laser Ti:saphir de 30 nm de largeur spectrale, qui est ensuite élargi grâce aux diverses non linéarités d'une fibre à cristaux photoniques à travers laquelle passe le faisceau. On obtient alors un élargissement qui dépasse largement l'octave allant de 1 064 nm à 532 nm. Le spectre élargi du laser est appelé peigne de fréquences. La valeur du décalage du peigne est obtenue en doublant la fréquence de la $n^{\rm e}$ raie dans la partie infrarouge du peigne et en la mélangeant avec la $2n^{e}$ raie. Ce mélange permet d'observer alors un battement à la fréquence :

$$2(f_0 + n \times f_{rep}) - (f_0 + 2n \times f_{rep}) = f_0$$

Le battement résulte du produit (via un élément non linéaire) d'un champ électrique oscillant à une fréquence f_1 avec un champ oscillant à une fréquence f_2 . On crée ainsi des oscillations à la fréquence somme et différence. Une simple photodiode constituant l'élément non linéaire permet donc la mesure de f_0 . La mesure de la fréquence v_x d'un laser se fait alors en le mélangeant avec le mode du laser femtoseconde le plus proche, afin d'obtenir un battement b, pourvu que l'on connaisse déjà suffisamment bien la fréquence du dit laser pour identifier l'ordre de la raie la plus proche. Ceci est facilité par le taux de répétition élevé du laser donnant un écart entre les dents du peigne proche du gigahertz, qui n'impose qu'une prédétermination à quelques 10⁻⁶ en valeur relative de la fréquence du laser à mesurer. Une fois n identifié, la fréquence du laser inconnu sera tout simplement :

$$\mathbf{v}_{\mathrm{x}} = f_{\mathrm{n}} + b = n \times f_{\mathrm{rep}} + f_0 + b$$
.

 f_0 peut être asservie sur une référence de fréquence et mesurée. Elle peut être aussi mélangée analogiquement avec la fréquence de battement b: on mesure ensuite directement la fréquence $f_0 + b$. Cette méthode permet de s'affranchir d'une boucle d'asservissement et de ne mesurer qu'une fréquence $(f_0 + f_b)$ au lieu de deux.

3. Système de mesure femtoseconde du LNE-INM

3.1. Schéma du dispositif de mesure

L'ensemble du dispositif optique est compris sur une surface de 80 cm \times 80 cm. L'asservissement du taux de répétition se fait après sa détection par une photodiode type PIN (marque EOT, modèle ET-2030A) et le mélange avec la fréquence de référence issu d'un synthétiseur de fréquence (marque Rhode & Schwartz modèle LM01) piloté par notre référence de fréquence à 10 MHz. La sortie du mélangeur est envoyée à l'entrée d'un intégrateur dont la sortie pilote une céramique piezo-électrique collée sur un des miroirs plans du laser Ti:saphir.

Le spectre du laser est ensuite élargi par passage dans une fibre à cristaux photoniques. Un objectif de microscope à l'entrée de la fibre permet de focaliser le faisceau dans la fibre et un objectif identique en sortie de fibre assure la collimation. La puissance optique moyenne disponible à la sortie de la fibre est d'environ 200 mW. Une lame demi-onde contrôlant la polarisation du laser à l'entrée de la fibre permet de modifier la répartition spectrale de la lumière à la sortie de la fibre.

Fig. 2. – Schéma de principe de la mesure du décalage du peigne (IR = infrarouge).

Le décalage du peigne est mesuré classiquement en séparant la partie infra rouge de la partie visible après la sortie de la fibre non linéaire. La figure 2 en résume le principe. La partie infrarouge est doublée en fréquence dans un cristal de KTP (titanyl phosphate de potassium) au centre d'un système afocal. Le doublage de fréquence est optimisé pour une onde fondamentale à 1,064 µm. Ce faisceau doublé en fréquence est ensuite recombiné par une lame séparatrice au faisceau visible directement issu de la sortie de la fibre non linéaire. Une photodiode type PIN (marque EOT, modèle ET-2030A) est placée sur le trajet des deux faisceaux correctement alignés. Un signal électrique oscillant à la fréquence de décalage du peigne est délivré par la photodiode. Le rapport signal sur bruit de ce signal est toujours supérieur à 40 dB pour une bande d'analyse de 100 kHz. Pour réaliser un comptage correct, le signal est amplifié pour obtenir un niveau d'environ 0 dBm. Avant l'amplification, le signal est filtré par un filtre passe bas adapté.

Le signal de battement entre le laser à étalonner et la dent du peigne la plus proche est obtenu après une superposition des deux faisceaux par une lame séparatrice. Afin de limiter le bruit détecté, provenant du très large spectre du laser femtoseconde, la lumière provenant des deux lasers est dispersée par un réseau de diffraction holographique de 1 200 traits/mm, avant d'être détectée par une photodiode silicium amplifiée (marque EOT, modèle ET-2030A). Ainsi, le spectre du laser femtoseconde détecté est limité à sa partie recouvrant la fréquence du laser à étalonner. L'utilisation d'un réseau de diffraction permet une plus grande souplesse que celle d'un filtre interférentiel. De plus, le rapport signal sur bruit obtenu est identique avec un filtre interférentiel ou un réseau de diffraction. Ce signal est filtré par un filtre passe bande réglable (marque K&L). Après ce filtre, le signal est amplifié par un amplificateur de gain 40 dB et de 1,5 GHz de bande passante (marque MITEQ, modèle AM-4A-000115). Le rapport signal sur bruit obtenu (à 532 nm et 543 nm) est de 30 dB à 35 dB pour une bande d'analyse de 100 kHz. La puissance disponible du laser à étalonner est d'environ 2 mW à l'entrée du système.

Fig. 3. – Schéma de principe du système de mesure de fréquence optique pour la matérialisation du mètre (BPF = *band pass filter*, LPF = *low pass filter*).

Le signal de battement amplifié et le signal du décalage du peigne amplifié sont injectés respectivement dans l'entrée RF et LO d'un mélangeur doublement balancé. La sortie IF du mélangeur est filtrée par un filtre passe bande ajustable (marque K&L).

La sortie filtrée du mélangeur est ensuite envoyée sur un compteur de fréquence (HP 52132A). Le rapport signal sur bruit du signal est de l'ordre de 30 dB à 35 dB pour une bande d'analyse de 100 kHz. L'acquisition des données est faite par un programme Labview qui prend en compte l'écart entre notre référence et le temps GPS donné par la baie SYREF. Pour s'assurer d'un bon comptage de fréquence, la mesure est effectuée ensuite avec une atténuation de 3 dB à l'entrée du compteur de fréquence. La mesure est considérée valable si les valeurs avec et sans atténuation sont identiques. Le schéma de principe de l'ensemble du dispositif est représenté sur la figure 3.

3.2. Référence de fréquence

Le principe est de disposer d'une horloge suffisamment exacte et stable pour réaliser des mesures de fréquence optique avec une incertitude relative de $5 \cdot 10^{-12}$ pour un temps d'intégration d'environ 1 000 s. L'horloge que nous avons choisie est un quartz (marque Oscilloquartz, modèle OCXO 8600). La fréquence de cet oscillateur est stable sur le court terme $(3 \cdot 10^{-13} \text{ en valeur})$ relative sur 1 s) mais dérive dès que le temps d'intégration dépasse 10 s, comme le montre les mesures représentées sur la figure 4. Pour profiter de cette stabilité à court terme et éviter la dérive à long terme, cet oscillateur est asservi en phase sur une horloge à rubidium (modèle X72 de Symetricom), dont la stabilité de fréquence est représentée également sur la figure 4. C'est l'oscillateur à quartz asservi sur l'horloge à rubidium qui constitue notre horloge de référence à 10 MHz. Cette horloge a une stabilité toujours meilleure que $2 \cdot 10^{-12}$ en valeur relative, quel que soit le temps d'intégration (fig. 4).

La fréquence de répétition du laser femtoseconde est d'environ 1 GHz ; cette fréquence est obtenue à partir de la référence par un synthétiseur de fréquence (marque Rhodes et Schwartz, modèle LM01).

L'exactitude de la référence est assurée par la comparaison avec la référence de temps délivrée par la constellation du GPS. Cette comparaison est assurée par une baie de mesure (dénommée SYREF) mise au point et commercialisée par l'Observatoire de Besançon. Les récepteurs GPS classiques dit « *one way* » peuvent délivrer une fréquence avec une exactitude de quelques 10^{-13} après une intégration sur 24 h. Pour des temps d'intégration de l'ordre de 1 000 s, l'exactitude relative est de l'ordre de $5 \cdot 10^{-12}$. C'est ce type de récepteur que nous utilisons. Des techniques de vue commune plus sophistiquées permettent des exactitudes de quelques 10^{-15} sur 24 h.

Fig. 4. – Stabilité de la référence ; ces mesures ont été réalisées au Laboratoire de physique des lasers de Paris 13 (Villetaneuse) en utilisant le lien optique avec le LNE-SYRTE (OUS = oscillateur ultra stable, OUS_Rub = oscillateur ultrastable asservi sur l'horloge à rubidium, Rub. = oscillateur à rubidium).

La baie affiche une mesure toutes les 15 min, correspondant à une intégration sur ce même temps. L'exactitude relative de cette mesure sur ce temps d'intégration est de l'ordre de $5 \cdot 10^{-12}$. Entre deux mesures séparées de 15 min, les variations de fréquence observées sont de quelques 10^{-12} . Il est important de suivre l'évolution de cette différence entre la fréquence de référence et le temps GPS. Très rarement, des fluctuations importantes et anormales de l'ordre de quelques 10^{-11} pendant quelques jours peuvent être observées (liées à une intense activité solaire par exemple) [5]. Il convient de réaliser les mesures hors de ces périodes très exceptionnelles. La valeur de la fréquence de l'horloge lors de la mesure n'est disponible qu'après la mesure, mais diffère très peu de sa valeur 15 min avant la mesure.

4. Exemples de mesure au LNE-INM/CNAM

4.1. Laser Nd:YAG doublé en fréquence asservi sur l'iode

Le LNE-INM possède deux lasers Nd:YAG doublés en fréquence et asservi sur l'iode. L'un d'eux (INMY3) a déjà participé à plusieurs comparaisons internationales (par exemple [6]) et a été déjà mesuré au LNE-SYRTE [7]. Sa reproductibilité est estimée à environ 1 kHz ($2 \cdot 10^{-12}$ en valeur relative). Sa stabilité relative est mesurée par un battement de fréquences entre les deux lasers étalons. Elle vaut $8 \cdot 10^{-14}$ pour 1 s de temps d'intégration.

Plusieurs séries de mesure ont été réalisées pour INMY3. Les différentes valeurs, espacées sur une période de 2 ans ne diffèrent pas plus de 10^{-12} . Les paramètres d'influence sur la fréquence du laser sont bien connus et mesurés, ce qui nous permet de corriger les différentes mesures brutes pour les ramener à des conditions standards : température du queusot d'iode à -15 °C, amplitude de modulation de 1 MHz, puissance du faisceau à l'entrée de la cellule de 1 mW.

L'écart type d'Allan obtenu par battement de fréquences entre le laser femtoseconde et le laser YAG est d'environ 10^{-12} . Cette valeur correspond à la stabilité relative du peigne de fréquence.

4.2. Laser à colorant à 543 nm

Une des longueurs d'onde utilisées pour la matérialisation du mètre est 543 nm, obtenue par un laser He-Ne asservi en fréquence par une technique de polarisation. Ce laser ne délivre qu'une puissance de $20 \ \mu$ W, ce qui rend difficile sa mesure directe par rapport au peigne femtoseconde. La reproductibilité de fréquence de ce laser sur plusieurs années est de l'ordre de 1 MHz, soit environ $2 \cdot 10^{-9}$ en valeur relative. L'étalonnage de ce laser se fait par un battement de fréquence classique avec le laser à colorant servant de référence et asservi sur une transition hyperfine de l'iode recommandée par le CIPM située à moins de 1 GHz de la fréquence d'émission du laser He-Ne.

La traçabilité des mesures passe donc par la mesure absolue de la fréquence du laser à colorant asservi sur l'iode. La puissance disponible pour le battement avec le peigne de fréquences est supérieure à 2 mW et donc suffisante pour obtenir un rapport signal sur bruit supérieur à 30 dB dans une bande passante de 100 kHz. La recommandation du CIPM pour l'incertitude sur la fréquence des composantes hyperfines des transitions rovibroniques R(12) 26-0 et R(106) 28-0 est de 280 kHz (2σ), soit 5·10⁻¹⁰ en valeur relative [1]. Néanmoins, les recommandations préconisent l'utilisation d'un laser He-Ne, asservi sur une cellule d'iode externe à la cavité. La mesure du laser à colorant par le peigne femtoseconde nous permet de nous affranchir de la limitation à l'utilisation d'un laser He-Ne de ces recommandations.

Nous avons effectué les mesures du laser à colorant à 1 mois d'intervalle. L'incertitude de la mesure est de 80 kHz (k = 2), largement dominée par la reproductibilité de fréquence du laser à colorant. Cette incertitude est tout à fait satisfaisante compte tenu de la reproductibilité des lasers qui sont étalonnés par rapport au laser à colorant.

La valeur mesurée, pour la composante b_{15} de la transition R(106) 28-0 est la suivante :

 $f_{b15} = 551\ 580\ 449,58 \pm 0,080\ MHz\ (k = 2)$.

Cette valeur est à comparer à la valeur recommandée :

 $f_{\text{recommandée}} = 551\ 580\ 449,62 \pm 0,280\ \text{MHz}\ (k=2)$

L'écart entre la valeur recommandée et la valeur mesurée n'est que de 40 kHz, largement inférieure à l'incertitude de 280 kHz sur la fréquence recommandée. L'incertitude que nous pouvons attribuer à la valeur de notre étalon est 3 fois plus faible que celle obtenue en utilisant les recommandations du CIPM.

5. Conclusion

Le système femtoseconde mis en place au LNE-INM nous permet d'assurer la traçabilité de nos sources lasers de référence, directement par rapport au temps GPS. La mesure directe de la fréquence des lasers nous permet, pour le laser à colorant, de réduire notablement l'incertitude des composantes hyperfines de l'iode qui servent de référence lors des étalonnages.

Références

- QUINN T.J., "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)", *Metrologia*, 40, 2003, 103– 133.
- [2] HOLZWARTH R. et al., "Optical frequency synthesizer for precision spectroscopy", *Phys. Rev. Lett.*, 85, 2000, 2264– 2267.
- [3] BIRKS T.A., KNIGHT J.C. et RUSSELL P.S.J., "Endlessly single-mode photonic crystal fiber", *Optics Letters*, 22, 1997, 961–963.

- [4] DIDDAMS S.A. et al., "Direct link between microwave and optical frequency with a 300 THz femtosecond laser comb", *Phys. Rev. Lett.*, 84, 2000, 5102–5105.
- [5] FOX R.W, DIDDAMS S.A, BARTELS A., et HOLLBERG L., "Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He-Ne laser", *Applied optics.*, **44**, 1, 2005, 113–120.
- [6] PICARD S, ROBERTSSON L, MA L.S, NYHOLM K, MERIMAA M, AHOLA T.E., BALLING P., KREN P. et WALLERAND J.-P., "Comparison of 12712-stabilized frequency-doubled Nd:YAG lasers at the Bureau

Article reçu le 17 mars 2008 ; version révisée reçue le 20 février 2009.

international des poids et mesures", *Appl. Opt.*, **42**, 2003, 1019–1028.

- [7] ROVERA G.D., DUCOS F., ZONDY J.-J., ACEF O. et WALLERAND J.-P., "Absolute Frequency measurement of an I₂ stabilized Nd:YAG optical frequency standard", *Meas. Sci. Technol.*, 13, 2002, 918-922.
- [8] GONCHAROV A., AMY-KLEIN A., LOPEZ O., DU BURCK F. et CHARDONNET CH., "Absolute frequency measurement of the iodine-stabilized Ar+ laser at 515.6 nm using a femtosecond optical frequency comb", *Appl. Phys. B*, 78, 2004, 725–731.